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Abstract 
 
In support of Military Mine Warfare (MIW) clearance operations for safe vessel passage, 
analysts perform change detection by visually comparing historical high-resolution 
sidescan sonar imagery (SSI) with newly collected SSI in an attempt to identify newly 
placed objects.  The objective of MIW change detection is to match objects detected in 
new SSI with historical objects stored in a database.  Any newly detected objects not 
successfully matched are flagged for investigation. A requirement exists for a system to 
perform real-time change detection and classification.  
 
This paper presents an Automated Change Detection and Classification (ACDC) System, 
developed by the Naval Research Laboratory (NRL) and the Naval Oceanographic Office 
(NAVOCEANO), which aids analysts in performing change detection in real-time (RT) 
by co-registering new and historical imagery and using automated change detection 
algorithms that suggest imagery changes.  In this paper, ACDC-RT components are 
described and results given from a recent change detection experiment. 
 
Introduction 
 
This paper presents the development and testing of a prototype Automated Change 
Detection and Classification – Real-time (ACDC-RT) system developed by the Naval 
Research Laboratory (NRL) and the Naval Oceanographic Office (NAVOCEANO).  
ACDC-RT aids sidescan sonar analysts in locating proud objects on the seafloor over 
geographic areas where historical sidescan sonar imagery (SSI) exists.  Using ACDC-RT, 
two analysts can perform “change detection” in real-time, i.e., as the SSI is being 
collected. 
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NRL also has developed real-time (RT) change detection algorithms.  Beginning in 2002 
under 6.2 Exploratory Research funding, NRL modified existing ACDC components to 
perform RT change detection and apply the results to correct the position of autonomous 
underwater vehicles (AUVs).  The premise was that an AUV would have an on-board 
database populated with features detected in historical SSI.  The ACDC algorithms 
aboard the AUV would attempt to detect new features in RT, match individual features 
with features in the on-board database, and use this information to correct the AUV’s 
position. 
 
In support of this goal, NRL and NAVOCEANO demonstrated the ACDC-RT concept at 
a January 2006 Johns Hopkins University Applied Physics Laboratory (JHU/APL) 
change detection planning meeting using partially completed ACDC components with 
SSI collected during the 2005 JHU/APL Change Detection Experiment.  NRL and 
NAVOCEANO further developed and demonstrated a proof-of-concept ACDC-RT 
system during the 2006 JHU/APL Change Detection Experiment.  A description of the 
experiment and the results are given later in this paper. 
 
Figure 1 shows the two main displays of the ACDC-RT system.  The display on the left is 
a (time-based) waterfall display of SSI as it is being collected.  The display on the right is 
a (geo-registered-based) waterfall display of historical SSI over the same area.  ACDC-
RT algorithms have detected a mine-like contact in the RT SSI (yellow box on the left 
display) and matched it with the same contact observed in the past (yellow box on the 
right display).  Figure 2 is a close up view of the contact (present view on the left and 
historical view on the right).  The position of the contact in the historical SSI compared to 
the position of the contact in the newly collected SSI is slightly different due to position 
error present between the two datasets.  This is discussed later in this paper.     
 

 

  Figure 1 – View of the two main ACDC-RT co-registered displays.  On the left is real-time SSI 
from a survey area, and on the right is historical SSI over the same area.  The yellow boxes in 
both displays contain the same contact, automatically detection by the ACDC-RT software, 
observed in both surveys (new and historical). 
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  Figure 2 – Close up view of the same contact observed in the present (left) and the past (right).  
Note that contact in the historical SSI (right) is not in the center of the yellow box.  This is due to 
position error between the historical and RT SSI. 

Before ACDC-RT is discussed, an overview of sidescan sonar basics and change 
detection using SSI is given.  Details of the 2006 JHU/APL Change Detection experiment 
are then briefly given along with results of the performance of ACDC-RT during the 
experiment. 
 
Sidescan Overview 
 
Dr. Harold Edgerton at the Massachusetts Institute of Technology (MIT) first developed 
sidescan sonar in the 1960’s.  The sidescan sonar system (SSS) transmits an acoustical 
beam on each side of a transducer, sometimes called the “fish.”  The beams are sent in a 
wide angular pattern down to the bottom in swaths 50-500 meters wide, and the echoes 
are returned creating a narrow strip below and to the sides of the transducer track 
(Blondel and Murton, 1997). 
 
The SSS are usually towed from a platform, such as a ship or helicopter, hull-mounted, or 
carried on AUVs.  The fish is often equipped with a pressure or altimeter sensor that 
allows it to follow the bottom while maintaining a constant height above the seafloor or 
alternatively “fly” at a constant depth below the surface.  Important measurements such 
as heading, pitch, and roll are recorded on-board AUV or, in the case of towed 
transducers, are often transmitted up the towing cable and recorded separately on the 
towing vessel (Fish and Carr, 1990). 
 
Because the Global Positioning Systems (GPS) does not function underwater, the 
position of cable-towed transducers is calculated from the GPS location of the surface 
vessel by using a cable layback model or acoustic tracking system (Schwab et al., 1991; 
Kenny et al., 2001). 
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Figure 3.  Depiction showing a sidescan sonar system (SSS) imaging over the sea bottom. 

Figure 3 depicts a SSS being towed.  The beams strike the seafloor and are reflected back 
to the fish.  Processing and sampling the raw sidescan data forms scanlines that make up 
grayscale SSI (Figure 4).  Directly below the fish, called nadir, the SSS is blind due to the 
spreading of the beams.  
 
Objects close to or on the seafloor, such as mines, can be detected with SSI.  These 
objects, or contacts, show up in the SSI as bright spots with adjacent shadows that face 
perpendicular away from nadir.  Features of various shapes and sizes can be detected by 
the shadows (Collet et al., 1996), and the size of the shadow varies as a function of beam 
angle and feature dimensions (Fish and Carr, 1990).  Figure 5 shows an example of a 
small image extracted from SSI called a snippet that contains a contact.  NAVOCEANO 
maintains a Master Contact Database (MCDB) containing thousands of features detected 
from SSI worldwide since the early 1990’s.  
 

            

                Figure 4.  Sidescan Sonar Imagery (SSI).                      Figure 5.  SSI contact snippet. 
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The SSI is stored in NAVOCEANO’s Unified Sonar Image Processing System 
(UNISIPS) format.  Each scan line of the imagery is stored in a separate record, and the 
latitude and longitude coordinate, the sonar heading, speed, and depth above the seafloor 
are given for the sample at nadir. 
 
By its nature, SSI is non-linear (Reed et al., 2002).  Correlation between pixels in SSI is 
affected by “speckle” noise (Blondel and Murton, 1997).  This speckle noise also 
hampers the extraction of targets and features in sidescan imagery (Reed et al., 2002).  
The imagery can contain phantom features created by surface return when the sonar is in 
shallow water or when the fish is pitched (Kenny et al., 2001).  GPS signal dropout at the 
surface can also cause the imagery processing software to lose scan lines or to duplicate 
others (Fish and Carr, 1990).  Any automated feature detection method that is applied to 
the imagery must be robust and able to cope with all these issues. 
 
Bottom objects and features can also change and migrate over time due to ocean currents 
and burial.  Even when the objects are stationary, one of the biggest issues with sidescan 
is position error, often observed to be 15 m or greater during actual surveys Schwab et 
al., 1991).  The center latitude/longitude position of each scan line in the UNISIPS file 
includes position error due to GPS error and error from the cable layback model.  
Because SSS is usually towed through the water with a cable attached to a tow platform, 
sometimes-large positioning errors are introduced (Schwab et al., 1991, Kenny et al., 
2001). 
 
Since GPS will not work underwater, the position of the tow platform, determined by 
GPS, is first measured, and then the position of the fish is computed by taking into 
account the length of the cable.  If the GPS antenna is not mounted at the same location 
where the tow cable attaches to the platform, the “antenna offset” must be included in the 
calculation.  If one assumes that the cable is a straight line, the cable length can be 
computed by using the Pythagorean theorem (Figure 6).  In reality, the cable is not 
straight, and a more complicated equation, called a cable layback model, is sometimes 
used (Figure 7). 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  The cable is assumed to be straight.    

GPS 
Offset
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Figure 7.  A more realistic depiction of the cable. 

Change Detection With Sidescan Sonar Imagery 
 
Change detection is the process of identifying differences in the state of an object or 
phenomenon by observing it at different times (Deer, 1995).  The term “digital change 
detection” applies when computer algorithms are used to perform related change 
detection tasks commonly on data collected by a remote sensing device (Singh, 1989).  
Digital change detection is a major application of remote-sensed data (Rosin, 1994). 
 
In support of military Mine Warfare (MIW) clearance operations for safe vessel passage, 
analysts perform change detection by visually comparing historical high-resolution SSI 
with newly collected SSI in an attempt to identify newly placed objects.  The objective of 
MIW change detection is to match objects detected in new SSI with historical objects 
stored in a database.  Change detection using SSI is potentially a significant time saving 
tool, but problems such as large data volume, navigational errors, sonar towfish 
instabilities, differences aspect/orientation, and differences in environmental conditions 
can hinder the time savings (Lingsch and Lingsch, 2001). 
 
There is an abundance of literature showing the success of the digital change detection on 
satellite imagery including the ones referenced here (Howarth and Wickware, 1981; 
Griffiths, 1988; Stow et al. 1990; Banner, 1991; Lambin and Strahler, 1994).  Literature 
is sparse on digital change detection techniques for SSI, although groundbreaking 
research by the authors at the NRL and the NAVOCEANO in collaboration with the 
University of New Orleans (UNO) is being conducted (McDowell et al., 2003; Ioup et al., 
2003, Ioup et al., 2004).  Results from this research and experiments show that automated 
digital change detection techniques applied to SSI can greatly reduce the time it takes 
analysts to perform manual change detection.  Faster change detection will reduce mine 
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clearance timelines and allow MIW operators to accurately assess the risk to follow-on 
naval forces. 
 
ACDC 
 
Over the past few years, the NAVOCEANO has developed software tools and 
applications to aid analysts in performing manual change detection more efficiently, thus 
reducing the amount of time needed to identify new bottom objects.  NRL working 
closely with NAVOCEANO, has developed components of a (non-RT) ACDC system 
including a Computer-aided Detection (CAD) algorithm, Completion algorithm, 
Computer-aided Search (CAS) algorithm, and Feature-Matching (FM) algorithm. 
 
The final version of ACDC will aid analysts in detecting seafloor features in SSI, 
classifying and cataloging these features, and comparing them with features “seen” in 
historical SSI, to determine if the features have moved or are new.  A prototype ACDC 
has been shown to successfully reduce the time to perform change detection, compared 
with manual methods, while producing similar results (Gendron et al., 2005).  Below the 
key components of ACDC are briefly discussed. 
 
 

CAD Algorithm 
 
There are a variety of digital change detection techniques including image differencing 
(Weismiller et al., 1977; Miller et al., 1978; Williams and Stauffer, 1978), image 
regression (Singh, 1986; Jha and Unni, 1994), and post-classification comparison.  The 
post-classification change detection technique compares two images that were classified 
independently (Howarth and Wickware, 1981).  NRL has applied this technique to SSI, 
and developed a unique CAD algorithm that is capable of detecting and extracting 
snippets from historical and recently collected SSI so comparisons can be made later.  
The CAD algorithm utilizes geospatial bitmaps (GBs) to run in real-time one scanline at a 
time (Gendron et al., 2001). 
 

Completion Algorithm 
 
The snippets are then sent to a classification stage where NRL’s Completion algorithm 
attempts to determine if the snippet contains a mine-like contact.  The Completion 
algorithm attempts to determine attributes such as size and shape, and the algorithm then 
computes a confidence measure.  The completion process is not fully automated and 
prompts the operator to make a final judgment when the confidence measure falls below 
a set threshold.  Figure 8 shows an example of two snippets produced by the CAD 
algorithm.  The Completion algorithm filters the snippet and extracts the shadow.  The 
algorithm then uses the shadow to “complete” the bright spot based on known 
information such as sonar altitude and the contact’s distance from nadir. 
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CAS Algorithm 
 
The location of each completed contact is then passed to a CAS algorithm, which queries 
the MCDB and finds all the historical contacts that are “spatially close” based on an 
estimate of position error.  One factor that can greatly reduce the accuracy of post-
classification change detection is the inaccurate geometric registration between the two 
images (Howarth and Wickware, 1981; Mas, 1999; Singh, 1989).  In most cases, the 
accurate geo-registration of SSI is impossible due to inherent position error.  The CAS 
algorithm uses GBs and a modified quadtree structure to accurately and efficiently 
perform geospatial searches. 
 
Figure 9 shows a new contact, N1, with its associated location error ellipse.  In this 
example, the CAS algorithm determines that H3 and H10 are possibly N1 observed in the 
past because the location of H10 falls within N1’s error ellipse and H3’s ellipse falls 
within N1’s ellipse. 
 

               

Figure 8.  Completion on two different snippets.                          Figure 9.   CAS Query.            

FM Algorithm 
 
ACDC then tries to automatically “match” one of the historical contacts with the new 
contact by using an FM algorithm.  New objects that are not matched, i.e., not in the 
database, are identified as “new objects” (change detection).  FM algorithm uses a 
wavelet networks, which in the past have been proven to work well at matching features 
and are used extensively in face recognition, for example (Krueger and Sommer, 2000). 
 
ACDC-RT 
 
In fiscal year 2005, NRL and NAVOCEANO further developed ACDC into a real-time 
change detection system (ACDC-RT) and demonstrated the proof-of-concept system 
during the 2006 JHU/APL Change Detection Experiment.  ACDC was not designed to 
perform change detection without humans, but rather, enable analysts to perform change 
detection on SSI more efficiently.  Digital change detection techniques are useful tools to 
assist human analysts, and can be useful as a “cueing system” to attract the attention of 
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human analysts to “interesting” images, but further considerable effort is required to 
produce fully autonomous change detection systems (Deer, 1995). 
 
To minimize cost and time requirements, NRL and NAVOCEANO used as many of the 
original ACDC components (discussed above) and change detection software tools as 
possible.  Existing manual change detection software tools included NAVOCEANO’s 
DHARMA (Data Handling and Real-time Mosaicing Application) and CDFG (Change 
Detection Further Glance).  New components that were developed were a Historical 
UNISIPS Scroller (HUS) and RT Graphical User Interface (RT-GUI). 
 

 

Figure 10.  Proof-of-concept ACDC-RT System. 

Figure 10 depicts the proof-of-concept ACDC-RT system.  The system hardware (all in-
house, government-owned equipment) consists of three computers, three displays, and a 
gigabit network.  Display 1 runs a newly developed HUS application that displays 
historical SSI over the same geographic area (co-registered) as the new survey SSI 
collected in RT and displayed in the RT GUI.  The location of known contacts (i.e., 
features seen in previous surveys) are plotted in red over the historical SSI, along with the 
geographic location of the current survey’s sonar.  As the sidescan approaches the 
location of known contacts, the historical contacts automatically pop-up on the same 
display.  The red historical contact markers turn green when the object has been either 
manually or automatically observed in the SSI from the new survey. 
 
Display 1 requires almost no operator interaction.  By simply monitoring the display, the 
analyst can track where the sonar is in relationship to the historical SSI, which historical 
contacts are close by, what they looked like in the past, and if they have been observed in 
the new SSI.  To achieve this, NAVOCEANO and NRL modified and integrate relevant 
DHARMA components into ACDC-RT to perform these tasks automatically. 
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Display 2 runs the new RT GUI application developed by NAVOCEANO and NRL to 
display SSI from the new survey as it is being played back in RT.  ACDC’s CAD and 
Completion algorithms run on the SSI as it is being displayed.  When the algorithms 
detect a new feature, ACDC’s CAS algorithm queries the MCDB to determine if any 
historical features are spatially close.  If so, the new contact and the historical contact(s) 
are sent to the ACDC’s FM algorithm, which attempts to determine if the new feature is 
one of the historical features.  If so, the RT Operator will be prompted to verify the 
match.  If no match is found, the RT Operator will look at Display 1 and attempt to 
manually match the new contact with a historical contact.  The corresponding historical 
feature marker in Display 1 will turn green if either method produces a match. 
 
If anytime during the collection and displaying of new SSI the RT Operator sees a 
contact in the new SSI that was not detected by ACDC, the RT Operator can click on the 
contact in Display 2, at which point ACDC will attempt to complete the object, search the 
database, and perform the match.  The RT Operator can also perform the match manually 
as described above.  As described before, all resulting matches will turn green on Display 
1. 
 
Newly detected features that do not match either manually or automatically are provided 
to the quality control operator (QC Operator) for further verification.  The QC Operator 
performs manual change detection between new and historical SSI.  If the QC operator 
does not observe the contact in the historical data, the operator marks the contact as a 
new feature (i.e., placed in the survey area after the last survey). 
 
The Experiment 
 
The JHU/APL conducted an at-sea sidescan sonar change detection experiment in May 
2006.  Several commercial sonars and various methods for near-RT change detection 
were evaluated.  As part of this experiment, NRL and NAVOCEANO demonstrated the 
ACDC-RT system with three different sidescan sonars. 
 
The survey area consisted of five one-nautical mile long lines in shallow water (20 
meters) and five two-nautical mile long lines in deep water (55 meters). Since the set 
sonar range for the sidescan sonars was 50 meters, the survey lines were spaced at 37.5 
meters to allow for 100% overlap. Baseline surveys were conducted by each sonar in the 
shallow and deep areas, and the location of pre-existing contacts were determined.  This 
information was used to populate ACDC-RT’s “historical” MCDB. 
 
Ten objects representing mineshapes were then placed over the survey area, with five in 
the deep portion and five in the shallow portion.  Change detection surveys were then run 
by the sonars. The positions of the newly placed mineshapes were unknown to the change 
detection testing participants. While the change detection surveys were being conducted, 
ACDC-RT was running and identifying potential new targets. The goal of the experiment 
was to correctly identify at least 50% of the newly placed mineshapes. 
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Results 
 
After the RT change detection portion of the experiment was complete, ground truth 
positions for each of the newly placed mineshapes were given to NRL and 
NAVOCEANO. These ground truth positions were compared with the potential new 
contact positions called by analysts using ACDC-RT. For the typical sidescan sonar, 
eight of the ten newly placed mineshapes were correctly identified by ACDC-RT analysts 
as new contact.  The baseline snippets and the change detect snippets and pictures for 
some of the correctly identified mineshapes are shown in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  Examples of change detections. 

Two newly placed contacts that were not identified by ACDC-RT analysts were a 
cement-filled plywood box and a cement-filled lead pipe. The baseline snippets and the 
change detect snippets and pictures of these two missed shapes are shown in Figure 12. 
 

Object Baseline Imagery Change Detect Imagery 

Cement-filled 
5 gallon bucket 

Cement-filled  
plywood box 
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Figure 12.  Examples of missed mineshapes. 

With typical results of 80% of newly placed shapes identified, analysts using ACDC-RT 
exceeded expectations of identifying 50% of newly place mineshapes. 
  
Conclusion 
 
This paper presents the development and testing of a prototype ACDC-RT system 
developed by NRL and NAVOCEANO.  ACDC-RT aids sidescan sonar analysts in 
locating proud objects on the seafloor over geographic areas where historical SSI exists.  
Using ACDC-RT, two analysts can perform “change detection” in real-time, i.e., as the 
SSI is being collected. 
 
In 2006 during a JHU/APL Change Detection test, NRL and NAVOCEANO successfully 
demonstrated that sidescan analysis using the ACDC-RT system were able to identify 
over 50% of mineshapes placed in an area after a historical survey was conducted.  This 
was demonstrated using three different commercially available SSS.  Analysts using 

Object Baseline Imagery Change Detect Imagery 

Cement-filled  
plywood box 

Cement-filled 
lead pipe 
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ACDC-RT were able to find 80% of the newly placed mineshapes in RT with one of the 
sonars. 
 
Two plywood boxes and lead pipes were placed in this experiment. ACDC-RT analysts 
missed one of each and found one of each; therefore, it is probably not the characteristics 
(size, shape, material) of the missed mineshapes that made them undetectable.  Instead, it 
was more likely the placement of these missed mineshapes at the edge of the survey area. 
Only one scanline of imagery was collected at the boundaries of the survey area as 
opposed to the overlapping scanlines of imagery collected inside the survey area. 
 
Further funding is required to continue developing and testing ACDC-RT.  One key 
component that is missing is an Area-Matching (AM) algorithm.  The AM algorithm will 
be capable of automatically performing scene matching between historical and newly 
collected SSI.  This can increase the likelihood that a contact observed in the past is the 
same contact seen in the present if features around the contact are also matched. 
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